1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
use std::borrow::Borrow;
use std::cell::Cell;
use std::hash::Hash;
use std::hash::Hasher;
use std::marker::PhantomData;
use std::mem::forget;
use std::mem::transmute;
use std::ops::Deref;
use std::ptr::NonNull;

use libc::c_void;

use crate::support::Opaque;
use crate::Data;
use crate::HandleScope;
use crate::Isolate;
use crate::IsolateHandle;

extern "C" {
  fn v8__Local__New(isolate: *mut Isolate, other: *const Data) -> *const Data;
  fn v8__Global__New(isolate: *mut Isolate, data: *const Data) -> *const Data;
  fn v8__Global__NewWeak(
    isolate: *mut Isolate,
    data: *const Data,
    parameter: *const c_void,
    callback: extern "C" fn(*const WeakCallbackInfo),
  ) -> *const Data;
  fn v8__Global__Reset(data: *const Data);
  fn v8__WeakCallbackInfo__GetIsolate(
    this: *const WeakCallbackInfo,
  ) -> *mut Isolate;
  fn v8__WeakCallbackInfo__GetParameter(
    this: *const WeakCallbackInfo,
  ) -> *mut c_void;
  fn v8__WeakCallbackInfo__SetSecondPassCallback(
    this: *const WeakCallbackInfo,
    callback: extern "C" fn(*const WeakCallbackInfo),
  );
}

/// An object reference managed by the v8 garbage collector.
///
/// All objects returned from v8 have to be tracked by the garbage
/// collector so that it knows that the objects are still alive.  Also,
/// because the garbage collector may move objects, it is unsafe to
/// point directly to an object.  Instead, all objects are stored in
/// handles which are known by the garbage collector and updated
/// whenever an object moves.  Handles should always be passed by value
/// (except in cases like out-parameters) and they should never be
/// allocated on the heap.
///
/// There are two types of handles: local and persistent handles.
///
/// Local handles are light-weight and transient and typically used in
/// local operations.  They are managed by HandleScopes. That means that a
/// HandleScope must exist on the stack when they are created and that they are
/// only valid inside of the `HandleScope` active during their creation.
/// For passing a local handle to an outer `HandleScope`, an
/// `EscapableHandleScope` and its `Escape()` method must be used.
///
/// Persistent handles can be used when storing objects across several
/// independent operations and have to be explicitly deallocated when they're no
/// longer used.
///
/// It is safe to extract the object stored in the handle by
/// dereferencing the handle (for instance, to extract the *Object from
/// a Local<Object>); the value will still be governed by a handle
/// behind the scenes and the same rules apply to these values as to
/// their handles.
///
/// Note: Local handles in Rusty V8 differ from the V8 C++ API in that they are
/// never empty. In situations where empty handles are needed, use
/// Option<Local>.
#[repr(C)]
#[derive(Debug)]
pub struct Local<'s, T>(NonNull<T>, PhantomData<&'s ()>);

impl<'s, T> Local<'s, T> {
  /// Construct a new Local from an existing Handle.
  #[inline(always)]
  pub fn new(
    scope: &mut HandleScope<'s, ()>,
    handle: impl Handle<Data = T>,
  ) -> Self {
    let HandleInfo { data, host } = handle.get_handle_info();
    host.assert_match_isolate(scope);
    unsafe {
      scope.cast_local(|sd| {
        v8__Local__New(sd.get_isolate_ptr(), data.cast().as_ptr()) as *const T
      })
    }
    .unwrap()
  }

  /// Create a local handle by downcasting from one of its super types.
  /// This function is unsafe because the cast is unchecked.
  #[inline(always)]
  pub unsafe fn cast<A>(other: Local<'s, A>) -> Self
  where
    Local<'s, A>: From<Self>,
  {
    transmute(other)
  }

  #[inline(always)]
  pub(crate) unsafe fn from_raw(ptr: *const T) -> Option<Self> {
    NonNull::new(ptr as *mut _).map(|nn| Self::from_non_null(nn))
  }

  #[inline(always)]
  pub(crate) unsafe fn from_raw_unchecked(ptr: *const T) -> Self {
    Self(NonNull::new_unchecked(ptr as *mut _), PhantomData)
  }

  #[inline(always)]
  pub(crate) unsafe fn from_non_null(nn: NonNull<T>) -> Self {
    Self(nn, PhantomData)
  }

  #[inline(always)]
  pub(crate) fn as_non_null(self) -> NonNull<T> {
    self.0
  }

  #[inline(always)]
  pub(crate) fn slice_into_raw(slice: &[Self]) -> &[*const T] {
    unsafe { &*(slice as *const [Self] as *const [*const T]) }
  }
}

impl<'s, T> Copy for Local<'s, T> {}

impl<'s, T> Clone for Local<'s, T> {
  fn clone(&self) -> Self {
    *self
  }
}

impl<'s, T> Deref for Local<'s, T> {
  type Target = T;
  fn deref(&self) -> &T {
    unsafe { self.0.as_ref() }
  }
}

/// An object reference that is independent of any handle scope. Where
/// a Local handle only lives as long as the HandleScope in which it was
/// allocated, a global handle remains valid until it is explicitly
/// disposed using reset().
///
/// A global handle contains a reference to a storage cell within
/// the V8 engine which holds an object value and which is updated by
/// the garbage collector whenever the object is moved.
#[derive(Debug)]
pub struct Global<T> {
  data: NonNull<T>,
  isolate_handle: IsolateHandle,
}

impl<T> Global<T> {
  /// Construct a new Global from an existing Handle.
  #[inline(always)]
  pub fn new(isolate: &mut Isolate, handle: impl Handle<Data = T>) -> Self {
    let HandleInfo { data, host } = handle.get_handle_info();
    host.assert_match_isolate(isolate);
    unsafe { Self::new_raw(isolate, data) }
  }

  /// Implementation helper function that contains the code that can be shared
  /// between `Global::new()` and `Global::clone()`.
  #[inline(always)]
  unsafe fn new_raw(isolate: *mut Isolate, data: NonNull<T>) -> Self {
    let data = data.cast().as_ptr();
    let data = v8__Global__New(isolate, data) as *const T;
    let data = NonNull::new_unchecked(data as *mut _);
    let isolate_handle = (*isolate).thread_safe_handle();
    Self {
      data,
      isolate_handle,
    }
  }

  /// Consume this `Global` and return the underlying raw pointer.
  ///
  /// The returned raw pointer must be converted back into a `Global` by using
  /// [`Global::from_raw`], otherwise the V8 value referenced by this global
  /// handle will be pinned on the V8 heap permanently and never get garbage
  /// collected.
  #[inline(always)]
  pub fn into_raw(self) -> NonNull<T> {
    let data = self.data;
    forget(self);
    data
  }

  /// Converts a raw pointer created with [`Global::into_raw()`] back to its
  /// original `Global`.
  #[inline(always)]
  pub unsafe fn from_raw(isolate: &mut Isolate, data: NonNull<T>) -> Self {
    let isolate_handle = isolate.thread_safe_handle();
    Self {
      data,
      isolate_handle,
    }
  }

  #[inline(always)]
  pub fn open<'a>(&'a self, scope: &mut Isolate) -> &'a T {
    Handle::open(self, scope)
  }
}

impl<T> Clone for Global<T> {
  fn clone(&self) -> Self {
    let HandleInfo { data, host } = self.get_handle_info();
    unsafe { Self::new_raw(host.get_isolate().as_mut(), data) }
  }
}

impl<T> Drop for Global<T> {
  fn drop(&mut self) {
    unsafe {
      if self.isolate_handle.get_isolate_ptr().is_null() {
        // This `Global` handle is associated with an `Isolate` that has already
        // been disposed.
      } else {
        // Destroy the storage cell that contains the contents of this Global.
        v8__Global__Reset(self.data.cast().as_ptr())
      }
    }
  }
}

/// An implementation of [`Handle`] that can be constructed unsafely from a
/// reference.
pub(crate) struct UnsafeRefHandle<'a, T> {
  reference: &'a T,
  isolate_handle: IsolateHandle,
}
impl<'a, T> UnsafeRefHandle<'a, T> {
  /// Constructs an `UnsafeRefHandle`.
  ///
  /// # Safety
  ///
  /// `reference` must be derived from a [`Local`] or [`Global`] handle, and its
  /// lifetime must not outlive that handle. Furthermore, `isolate` must be the
  /// isolate associated with the handle (for [`Local`], the current isolate;
  /// for [`Global`], the isolate you would pass to the [`Global::open()`]
  /// method).
  #[inline(always)]
  pub unsafe fn new(reference: &'a T, isolate: &mut Isolate) -> Self {
    UnsafeRefHandle {
      reference,
      isolate_handle: isolate.thread_safe_handle(),
    }
  }
}

pub trait Handle: Sized {
  type Data;

  #[doc(hidden)]
  fn get_handle_info(&self) -> HandleInfo<Self::Data>;

  /// Returns a reference to the V8 heap object that this handle represents.
  /// The handle does not get cloned, nor is it converted to a `Local` handle.
  ///
  /// # Panics
  ///
  /// This function panics in the following situations:
  /// - The handle is not hosted by the specified Isolate.
  /// - The Isolate that hosts this handle has been disposed.
  fn open<'a>(&'a self, isolate: &mut Isolate) -> &'a Self::Data {
    let HandleInfo { data, host } = self.get_handle_info();
    host.assert_match_isolate(isolate);
    unsafe { &*data.as_ptr() }
  }

  /// Reads the inner value contained in this handle, _without_ verifying that
  /// the this handle is hosted by the currently active `Isolate`.
  ///
  /// # Safety
  ///
  /// Using a V8 heap object with another `Isolate` than the `Isolate` that
  /// hosts it is not permitted under any circumstance. Doing so leads to
  /// undefined behavior, likely a crash.
  ///
  /// # Panics
  ///
  /// This function panics if the `Isolate` that hosts the handle has been
  /// disposed.
  unsafe fn get_unchecked(&self) -> &Self::Data {
    let HandleInfo { data, host } = self.get_handle_info();
    if let HandleHost::DisposedIsolate = host {
      panic!("attempt to access Handle hosted by disposed Isolate");
    }
    &*data.as_ptr()
  }
}

impl<'s, T> Handle for Local<'s, T> {
  type Data = T;
  fn get_handle_info(&self) -> HandleInfo<T> {
    HandleInfo::new(self.as_non_null(), HandleHost::Scope)
  }
}

impl<'a, 's: 'a, T> Handle for &'a Local<'s, T> {
  type Data = T;
  fn get_handle_info(&self) -> HandleInfo<T> {
    HandleInfo::new(self.as_non_null(), HandleHost::Scope)
  }
}

impl<T> Handle for Global<T> {
  type Data = T;
  fn get_handle_info(&self) -> HandleInfo<T> {
    HandleInfo::new(self.data, (&self.isolate_handle).into())
  }
}

impl<'a, T> Handle for &'a Global<T> {
  type Data = T;
  fn get_handle_info(&self) -> HandleInfo<T> {
    HandleInfo::new(self.data, (&self.isolate_handle).into())
  }
}

impl<'a, T> Handle for UnsafeRefHandle<'a, T> {
  type Data = T;
  fn get_handle_info(&self) -> HandleInfo<T> {
    HandleInfo::new(
      NonNull::from(self.reference),
      (&self.isolate_handle).into(),
    )
  }
}

impl<'a, T> Handle for &'a UnsafeRefHandle<'_, T> {
  type Data = T;
  fn get_handle_info(&self) -> HandleInfo<T> {
    HandleInfo::new(
      NonNull::from(self.reference),
      (&self.isolate_handle).into(),
    )
  }
}

impl<'s, T> Borrow<T> for Local<'s, T> {
  fn borrow(&self) -> &T {
    &**self
  }
}

impl<T> Borrow<T> for Global<T> {
  fn borrow(&self) -> &T {
    let HandleInfo { data, host } = self.get_handle_info();
    if let HandleHost::DisposedIsolate = host {
      panic!("attempt to access Handle hosted by disposed Isolate");
    }
    unsafe { &*data.as_ptr() }
  }
}

impl<'s, T> Eq for Local<'s, T> where T: Eq {}
impl<T> Eq for Global<T> where T: Eq {}

impl<'s, T: Hash> Hash for Local<'s, T> {
  fn hash<H: Hasher>(&self, state: &mut H) {
    (&**self).hash(state)
  }
}

impl<T: Hash> Hash for Global<T> {
  fn hash<H: Hasher>(&self, state: &mut H) {
    unsafe {
      if self.isolate_handle.get_isolate_ptr().is_null() {
        panic!("can't hash Global after its host Isolate has been disposed");
      }
      self.data.as_ref().hash(state);
    }
  }
}

impl<'s, T, Rhs: Handle> PartialEq<Rhs> for Local<'s, T>
where
  T: PartialEq<Rhs::Data>,
{
  fn eq(&self, other: &Rhs) -> bool {
    let i1 = self.get_handle_info();
    let i2 = other.get_handle_info();
    i1.host.match_host(i2.host, None)
      && unsafe { i1.data.as_ref() == i2.data.as_ref() }
  }
}

impl<'s, T, Rhs: Handle> PartialEq<Rhs> for Global<T>
where
  T: PartialEq<Rhs::Data>,
{
  fn eq(&self, other: &Rhs) -> bool {
    let i1 = self.get_handle_info();
    let i2 = other.get_handle_info();
    i1.host.match_host(i2.host, None)
      && unsafe { i1.data.as_ref() == i2.data.as_ref() }
  }
}

#[derive(Copy, Debug, Clone)]
pub struct HandleInfo<T> {
  data: NonNull<T>,
  host: HandleHost,
}

impl<T> HandleInfo<T> {
  fn new(data: NonNull<T>, host: HandleHost) -> Self {
    Self { data, host }
  }
}

#[derive(Copy, Debug, Clone)]
enum HandleHost {
  // Note: the `HandleHost::Scope` variant does not indicate that the handle
  // it applies to is not associated with an `Isolate`. It only means that
  // the handle is a `Local` handle that was unable to provide a pointer to
  // the `Isolate` that hosts it (the handle) and the currently entered
  // scope.
  Scope,
  Isolate(NonNull<Isolate>),
  DisposedIsolate,
}

impl From<&'_ mut Isolate> for HandleHost {
  fn from(isolate: &'_ mut Isolate) -> Self {
    Self::Isolate(NonNull::from(isolate))
  }
}

impl From<&'_ IsolateHandle> for HandleHost {
  fn from(isolate_handle: &IsolateHandle) -> Self {
    NonNull::new(unsafe { isolate_handle.get_isolate_ptr() })
      .map(Self::Isolate)
      .unwrap_or(Self::DisposedIsolate)
  }
}

impl HandleHost {
  /// Compares two `HandleHost` values, returning `true` if they refer to the
  /// same `Isolate`, or `false` if they refer to different isolates.
  ///
  /// If the caller knows which `Isolate` the currently entered scope (if any)
  /// belongs to, it should pass on this information via the second argument
  /// (`scope_isolate_opt`).
  ///
  /// # Panics
  ///
  /// This function panics if one of the `HandleHost` values refers to an
  /// `Isolate` that has been disposed.
  ///
  /// # Safety / Bugs
  ///
  /// The current implementation is a bit too forgiving. If it cannot decide
  /// whether two hosts refer to the same `Isolate`, it just returns `true`.
  /// Note that this can only happen when the caller does _not_ provide a value
  /// for the `scope_isolate_opt` argument.
  fn match_host(
    self,
    other: Self,
    scope_isolate_opt: Option<&mut Isolate>,
  ) -> bool {
    let scope_isolate_opt_nn = scope_isolate_opt.map(NonNull::from);
    match (self, other, scope_isolate_opt_nn) {
      (Self::Scope, Self::Scope, _) => true,
      (Self::Isolate(ile1), Self::Isolate(ile2), _) => ile1 == ile2,
      (Self::Scope, Self::Isolate(ile1), Some(ile2)) => ile1 == ile2,
      (Self::Isolate(ile1), Self::Scope, Some(ile2)) => ile1 == ile2,
      // TODO(pisciaureus): If the caller didn't provide a `scope_isolate_opt`
      // value that works, we can't do a meaningful check. So all we do for now
      // is pretend the Isolates match and hope for the best. This eventually
      // needs to be tightened up.
      (Self::Scope, Self::Isolate(_), _) => true,
      (Self::Isolate(_), Self::Scope, _) => true,
      // Handles hosted in an Isolate that has been disposed aren't good for
      // anything, even if a pair of handles used to to be hosted in the same
      // now-disposed solate.
      (Self::DisposedIsolate, ..) | (_, Self::DisposedIsolate, _) => {
        panic!("attempt to access Handle hosted by disposed Isolate")
      }
    }
  }

  fn assert_match_host(self, other: Self, scope_opt: Option<&mut Isolate>) {
    assert!(
      self.match_host(other, scope_opt),
      "attempt to use Handle in an Isolate that is not its host"
    )
  }

  #[allow(dead_code)]
  fn match_isolate(self, isolate: &mut Isolate) -> bool {
    self.match_host(isolate.into(), Some(isolate))
  }

  fn assert_match_isolate(self, isolate: &mut Isolate) {
    self.assert_match_host(isolate.into(), Some(isolate))
  }

  fn get_isolate(self) -> NonNull<Isolate> {
    match self {
      Self::Scope => panic!("host Isolate for Handle not available"),
      Self::Isolate(ile) => ile,
      Self::DisposedIsolate => panic!("attempt to access disposed Isolate"),
    }
  }

  #[allow(dead_code)]
  fn get_isolate_handle(self) -> IsolateHandle {
    unsafe { self.get_isolate().as_ref() }.thread_safe_handle()
  }
}

/// An object reference that does not prevent garbage collection for the object,
/// and which allows installing finalization callbacks which will be called
/// after the object has been GC'd.
///
/// Note that finalization callbacks are tied to the lifetime of a `Weak<T>`,
/// and will not be called after the `Weak<T>` is dropped.
///
/// # `Clone`
///
/// Since finalization callbacks are specific to a `Weak<T>` instance, cloning
/// will create a new object reference without a finalizer, as if created by
/// [`Self::new`]. You can use [`Self::clone_with_finalizer`] to attach a
/// finalization callback to the clone.
#[derive(Debug)]
pub struct Weak<T> {
  data: Option<Box<WeakData<T>>>,
  isolate_handle: IsolateHandle,
}

impl<T> Weak<T> {
  pub fn new(isolate: &mut Isolate, handle: impl Handle<Data = T>) -> Self {
    let HandleInfo { data, host } = handle.get_handle_info();
    host.assert_match_isolate(isolate);
    Self::new_raw(isolate, data, None)
  }

  /// Create a weak handle with a finalization callback installed.
  ///
  /// There is no guarantee as to *when* the finalization callback will be
  /// invoked. However, unlike the C++ API, this API guarantees that when an
  /// isolate is destroyed, any finalizers that haven't been called yet will be
  /// run, unless a [`Global`] reference is keeping the object alive. Other than
  /// that, there is still no guarantee as to when the finalizers will be
  /// called.
  ///
  /// The callback does not have access to the inner value, because it has
  /// already been collected by the time it runs.
  pub fn with_finalizer(
    isolate: &mut Isolate,
    handle: impl Handle<Data = T>,
    finalizer: Box<dyn FnOnce(&mut Isolate)>,
  ) -> Self {
    let HandleInfo { data, host } = handle.get_handle_info();
    host.assert_match_isolate(isolate);
    let finalizer_id = isolate
      .get_finalizer_map_mut()
      .add(FinalizerCallback::Regular(finalizer));
    Self::new_raw(isolate, data, Some(finalizer_id))
  }

  pub fn with_guaranteed_finalizer(
    isolate: &mut Isolate,
    handle: impl Handle<Data = T>,
    finalizer: Box<dyn FnOnce()>,
  ) -> Self {
    let HandleInfo { data, host } = handle.get_handle_info();
    host.assert_match_isolate(isolate);
    let finalizer_id = isolate
      .get_finalizer_map_mut()
      .add(FinalizerCallback::Guaranteed(finalizer));
    Self::new_raw(isolate, data, Some(finalizer_id))
  }

  fn new_raw(
    isolate: *mut Isolate,
    data: NonNull<T>,
    finalizer_id: Option<FinalizerId>,
  ) -> Self {
    let weak_data = Box::new(WeakData {
      pointer: Default::default(),
      finalizer_id,
      weak_dropped: Cell::new(false),
    });
    let data = data.cast().as_ptr();
    let data = unsafe {
      v8__Global__NewWeak(
        isolate,
        data,
        weak_data.deref() as *const _ as *const c_void,
        Self::first_pass_callback,
      )
    };
    weak_data
      .pointer
      .set(Some(unsafe { NonNull::new_unchecked(data as *mut _) }));
    Self {
      data: Some(weak_data),
      isolate_handle: unsafe { (*isolate).thread_safe_handle() },
    }
  }

  /// Creates a new empty handle, identical to one for an object that has
  /// already been GC'd.
  pub fn empty(isolate: &mut Isolate) -> Self {
    Weak {
      data: None,
      isolate_handle: isolate.thread_safe_handle(),
    }
  }

  /// Clones this handle and installs a finalizer callback on the clone, as if
  /// by calling [`Self::with_finalizer`].
  ///
  /// Note that if this handle is empty (its value has already been GC'd), the
  /// finalization callback will never run.
  pub fn clone_with_finalizer(
    &self,
    finalizer: Box<dyn FnOnce(&mut Isolate)>,
  ) -> Self {
    self.clone_raw(Some(FinalizerCallback::Regular(finalizer)))
  }

  pub fn clone_with_guaranteed_finalizer(
    &self,
    finalizer: Box<dyn FnOnce()>,
  ) -> Self {
    self.clone_raw(Some(FinalizerCallback::Guaranteed(finalizer)))
  }

  fn clone_raw(&self, finalizer: Option<FinalizerCallback>) -> Self {
    if let Some(data) = self.get_pointer() {
      // SAFETY: We're in the isolate's thread, because Weak<T> isn't Send or
      // Sync.
      let isolate_ptr = unsafe { self.isolate_handle.get_isolate_ptr() };
      if isolate_ptr.is_null() {
        unreachable!("Isolate was dropped but weak handle wasn't reset.");
      }

      let finalizer_id = if let Some(finalizer) = finalizer {
        let isolate = unsafe { &mut *isolate_ptr };
        Some(isolate.get_finalizer_map_mut().add(finalizer))
      } else {
        None
      };
      Self::new_raw(isolate_ptr, data, finalizer_id)
    } else {
      Weak {
        data: None,
        isolate_handle: self.isolate_handle.clone(),
      }
    }
  }

  /// Converts an optional raw pointer created with [`Weak::into_raw()`] back to
  /// its original `Weak`.
  ///
  /// This method is called with `Some`, the pointer is invalidated and it
  /// cannot be used with this method again. Additionally, it is unsound to call
  /// this method with an isolate other than that in which the original `Weak`
  /// was created.
  pub unsafe fn from_raw(
    isolate: &mut Isolate,
    data: Option<NonNull<WeakData<T>>>,
  ) -> Self {
    Weak {
      data: data.map(|raw| Box::from_raw(raw.cast().as_ptr())),
      isolate_handle: isolate.thread_safe_handle(),
    }
  }

  /// Consume this `Weak` handle and return the underlying raw pointer, or
  /// `None` if the value has been GC'd.
  ///
  /// The return value can be converted back into a `Weak` by using
  /// [`Weak::from_raw`]. Note that `Weak` allocates some memory, and if this
  /// method returns `Some`, the pointer must be converted back into a `Weak`
  /// for it to be freed.
  ///
  /// Note that this method might return `Some` even after the V8 value has been
  /// GC'd.
  pub fn into_raw(mut self) -> Option<NonNull<WeakData<T>>> {
    if let Some(data) = self.data.take() {
      let has_finalizer = if let Some(finalizer_id) = data.finalizer_id {
        // SAFETY: We're in the isolate's thread because Weak isn't Send or Sync
        let isolate_ptr = unsafe { self.isolate_handle.get_isolate_ptr() };
        if isolate_ptr.is_null() {
          // Disposed isolates have no finalizers.
          false
        } else {
          let isolate = unsafe { &mut *isolate_ptr };
          isolate.get_finalizer_map().map.contains_key(&finalizer_id)
        }
      } else {
        false
      };

      if data.pointer.get().is_none() && !has_finalizer {
        // If the pointer is None and we're not waiting for the second pass,
        // drop the box and return None.
        None
      } else {
        assert!(!data.weak_dropped.get());
        Some(unsafe { NonNull::new_unchecked(Box::into_raw(data)) })
      }
    } else {
      None
    }
  }

  fn get_pointer(&self) -> Option<NonNull<T>> {
    if let Some(data) = &self.data {
      // It seems like when the isolate is dropped, even the first pass callback
      // might not be called.
      if unsafe { self.isolate_handle.get_isolate_ptr() }.is_null() {
        None
      } else {
        data.pointer.get()
      }
    } else {
      None
    }
  }

  pub fn is_empty(&self) -> bool {
    self.get_pointer().is_none()
  }

  pub fn to_global(&self, isolate: &mut Isolate) -> Option<Global<T>> {
    if let Some(data) = self.get_pointer() {
      let handle_host: HandleHost = (&self.isolate_handle).into();
      handle_host.assert_match_isolate(isolate);
      Some(unsafe { Global::new_raw(isolate, data) })
    } else {
      None
    }
  }

  pub fn to_local<'s>(
    &self,
    scope: &mut HandleScope<'s, ()>,
  ) -> Option<Local<'s, T>> {
    if let Some(data) = self.get_pointer() {
      let handle_host: HandleHost = (&self.isolate_handle).into();
      handle_host.assert_match_isolate(scope);
      let local = unsafe {
        scope.cast_local(|sd| {
          v8__Local__New(sd.get_isolate_ptr(), data.cast().as_ptr()) as *const T
        })
      };
      Some(local.unwrap())
    } else {
      None
    }
  }

  // Finalization callbacks.

  extern "C" fn first_pass_callback(wci: *const WeakCallbackInfo) {
    // SAFETY: If this callback is called, then the weak handle hasn't been
    // reset, which means the `Weak` instance which owns the pinned box that the
    // parameter points to hasn't been dropped.
    let weak_data = unsafe {
      let ptr = v8__WeakCallbackInfo__GetParameter(wci);
      &*(ptr as *mut WeakData<T>)
    };

    let data = weak_data.pointer.take().unwrap();
    unsafe {
      v8__Global__Reset(data.cast().as_ptr());
    }

    // Only set the second pass callback if there could be a finalizer.
    if weak_data.finalizer_id.is_some() {
      unsafe {
        v8__WeakCallbackInfo__SetSecondPassCallback(
          wci,
          Self::second_pass_callback,
        )
      };
    }
  }

  extern "C" fn second_pass_callback(wci: *const WeakCallbackInfo) {
    // SAFETY: This callback is guaranteed by V8 to be called in the isolate's
    // thread before the isolate is disposed.
    let isolate = unsafe { &mut *v8__WeakCallbackInfo__GetIsolate(wci) };

    // SAFETY: This callback might be called well after the first pass callback,
    // which means the corresponding Weak might have been dropped. In Weak's
    // Drop impl we make sure that if the second pass callback hasn't yet run, the
    // Box<WeakData<T>> is leaked, so it will still be alive by the time this
    // callback is called.
    let weak_data = unsafe {
      let ptr = v8__WeakCallbackInfo__GetParameter(wci);
      &*(ptr as *mut WeakData<T>)
    };
    let finalizer: Option<FinalizerCallback> = {
      let finalizer_id = weak_data.finalizer_id.unwrap();
      isolate.get_finalizer_map_mut().map.remove(&finalizer_id)
    };

    if weak_data.weak_dropped.get() {
      // SAFETY: If weak_dropped is true, the corresponding Weak has been dropped,
      // so it's safe to take ownership of the Box<WeakData<T>> and drop it.
      let _ = unsafe {
        Box::from_raw(weak_data as *const WeakData<T> as *mut WeakData<T>)
      };
    }

    match finalizer {
      Some(FinalizerCallback::Regular(finalizer)) => finalizer(isolate),
      Some(FinalizerCallback::Guaranteed(finalizer)) => finalizer(),
      None => {}
    }
  }
}

impl<T> Clone for Weak<T> {
  fn clone(&self) -> Self {
    self.clone_raw(None)
  }
}

impl<T> Drop for Weak<T> {
  fn drop(&mut self) {
    // Returns whether the finalizer existed.
    let remove_finalizer = |finalizer_id: Option<FinalizerId>| -> bool {
      if let Some(finalizer_id) = finalizer_id {
        // SAFETY: We're in the isolate's thread because `Weak` isn't Send or Sync.
        let isolate_ptr = unsafe { self.isolate_handle.get_isolate_ptr() };
        if !isolate_ptr.is_null() {
          let isolate = unsafe { &mut *isolate_ptr };
          let finalizer =
            isolate.get_finalizer_map_mut().map.remove(&finalizer_id);
          return finalizer.is_some();
        }
      }
      false
    };

    if let Some(data) = self.get_pointer() {
      // If the pointer is not None, the first pass callback hasn't been
      // called yet, and resetting will prevent it from being called.
      unsafe { v8__Global__Reset(data.cast().as_ptr()) };
      remove_finalizer(self.data.as_ref().unwrap().finalizer_id);
    } else if let Some(weak_data) = self.data.take() {
      // The second pass callback removes the finalizer, so if there is one,
      // the second pass hasn't yet run, and WeakData will have to be alive.
      // In that case we leak the WeakData but remove the finalizer.
      if remove_finalizer(weak_data.finalizer_id) {
        weak_data.weak_dropped.set(true);
        Box::leak(weak_data);
      }
    }
  }
}

impl<T> Eq for Weak<T> where T: Eq {}

impl<T, Rhs: Handle> PartialEq<Rhs> for Weak<T>
where
  T: PartialEq<Rhs::Data>,
{
  fn eq(&self, other: &Rhs) -> bool {
    let HandleInfo {
      data: other_data,
      host: other_host,
    } = other.get_handle_info();
    let self_host: HandleHost = (&self.isolate_handle).into();
    if !self_host.match_host(other_host, None) {
      false
    } else if let Some(self_data) = self.get_pointer() {
      unsafe { self_data.as_ref() == other_data.as_ref() }
    } else {
      false
    }
  }
}

impl<T, T2> PartialEq<Weak<T2>> for Weak<T>
where
  T: PartialEq<T2>,
{
  fn eq(&self, other: &Weak<T2>) -> bool {
    let self_host: HandleHost = (&self.isolate_handle).into();
    let other_host: HandleHost = (&other.isolate_handle).into();
    if !self_host.match_host(other_host, None) {
      return false;
    }
    match (self.get_pointer(), other.get_pointer()) {
      (Some(self_data), Some(other_data)) => unsafe {
        self_data.as_ref() == other_data.as_ref()
      },
      (None, None) => true,
      _ => false,
    }
  }
}

/// The inner mechanism behind [`Weak`] and finalizations.
///
/// This struct is heap-allocated and will not move until it's dropped, so it
/// can be accessed by the finalization callbacks by creating a shared reference
/// from a pointer. The fields are wrapped in [`Cell`] so they are modifiable by
/// both the [`Weak`] and the finalization callbacks.
pub struct WeakData<T> {
  pointer: Cell<Option<NonNull<T>>>,
  finalizer_id: Option<FinalizerId>,
  weak_dropped: Cell<bool>,
}

impl<T> std::fmt::Debug for WeakData<T> {
  fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
    f.debug_struct("WeakData")
      .field("pointer", &self.pointer)
      .finish_non_exhaustive()
  }
}

#[repr(C)]
struct WeakCallbackInfo(Opaque);

type FinalizerId = usize;

pub(crate) enum FinalizerCallback {
  Regular(Box<dyn FnOnce(&mut Isolate)>),
  Guaranteed(Box<dyn FnOnce()>),
}

#[derive(Default)]
pub(crate) struct FinalizerMap {
  map: std::collections::HashMap<FinalizerId, FinalizerCallback>,
  next_id: FinalizerId,
}

impl FinalizerMap {
  fn add(&mut self, finalizer: FinalizerCallback) -> FinalizerId {
    let id = self.next_id;
    // TODO: Overflow.
    self.next_id += 1;
    self.map.insert(id, finalizer);
    id
  }

  pub(crate) fn is_empty(&self) -> bool {
    self.map.is_empty()
  }

  pub(crate) fn drain(
    &mut self,
  ) -> impl Iterator<Item = FinalizerCallback> + '_ {
    self.map.drain().map(|(_, finalizer)| finalizer)
  }
}